Introduction to Parsing
(Syntax Analysis)

Introduction

Lexical Analysis:

e Reads characters of the input program and produces tokens.
But: Are they syntactically correct? Are they valid sentences of the input language?

= Now:

Context-free grammars,
Derivations,

Parse trees,

Ambiguity

Parsing: top-down and bottom-up.

Regular Expression

* The set of all strings of balanced parentheses {(), (()), ((())), ...},

* The set of all Os followed by an equal number of 1s, {01, 0011,
000111, ...}.

* Not all languages can be described by Regular Expressions!!

Chomsky’s hierarchy of Grammars:

e 1. Phrase structured.

e 2. Context Sensitive
number of Left Hand Side Symbols < number of Right Hand Side Symbols

e 3. Context-Free
The Left Hand Side Symbol is a non-terminal

e 4, Regular
Only rules of the form: A—¢, A— a, A—>pB are allowed.
Regular Languages — Context-Free Languages — Cont.Sens.Ls — Phr.Str.Ls

Expressing Syntax

e Context-free syntax is specified with a context-free grammar.

A grammar, G, is a 4-tuple G={S,N,T,P}, where:
S is a starting symbol;
N is a set of non-terminal symbols;
T is a set of terminal symbols;
P is a set of production rules.

e Example:
CatNoise—»CatNoise miau rule 1
[miau rule 2

e We can use the CatNoise grammar to create sentences: E.g.:

Rule Sentential Form
- CatNoise

1 CatNoise miau
2 miau miau

Derivation and Parsing

e Such a sequence of rewrites is called a derivation

* The process of discovering a derivation for some sentence is called
parsing!

Derivations

Derivation: a sequence of derivation steps:
* At each step, we choose a non-terminal to replace.
e Different choices can lead to different derivations.

Two derivations are of interest:

e Leftmost derivation: at each step, replace the leftmost non-terminal.

e Rightmost derivation: at each step, replace the rightmost non-terminal

(we don’t care about randomly-ordered derivations!)

A parse tree

A parse tree is a graphical representation for a derivation that filters out the
choice regarding the replacement order.

Construction: @

start with the starting symbol (root of the tree);

for each sentential form:
e add children nodes (for each symbol in the right-hand-side of the production rule that was
applied) to the node corresponding to the left-hand-side symbol.

The leaves of the tree (read from left to right) constitute a sentential form (fringe, or yield, or
frontier, or ...)

Find leftmost derivation & parse tree for: x-2*y

1. Goal — Expr

2. Expr — Expr op Expr
number

id

.Op —>+

0 N Ut

*
/

Find rightmost derivation & parse tree for: x-2*y

1. Goal — Expr

2. Expr — Expr op Expr
number

id

.Op —>+

0 N Ut

*
/

Derivations and Precedence

e The leftmost and the rightmost derivation in the
previous slide give rise to different parse trees.

— Assuming a standard way of traversing:
* The former will evaluate to x — (2%*y).
* The latter will evaluate to (x — 2)*y.
e The two derivations point out a problem with the
grammar: it has no notion of precedence (or implied
order of evaluation).

e To add precedence: force parser to recognise high-
precedence sub-expressions first.

Ambiguity

A grammar that produces more than one parse tree for some sentence Is
ambiguous. Or:

 |f a grammar has more than one leftmost derivation for a single
sentential form, the grammar is ambiguous.

 |f a grammar has more than one rightmost derivation for a single
sentential form, the grammar is ambiguous.

Ambiguity Example:

o Stmt — if Expr then Stmt | if Expr then Stmt else Stmt | ...other...

 What are the derivations of:
— If E1 then if E2 then S1 else S2

Eliminating Ambiguity

e Rewrite the grammar to avoid the * if E1 then if E2 then S1 else S2

problem
e Match each else to innermost

unmatched if:

1. Stmt — IfwithElse

2. | IfnoElse

3. IfwithElse — if Expr then IfwithElse else IfwithElse
4, | ... other stmts...

5. IfnoElse — if Expr then Stmt

6. | if Expr then IfwithElse else

IfnoElse

Eliminating Ambiguity

e Rewrite the grammar to avoid the * if E1 then if E2 then S1 else S2
problem
e Match each else to innermost Stmt
. (2) IfnoElse
unmatched if: (5) if Expr then Stmt
1. Stmt — IfwithElse (?) if E1 then Stmt
2 | IfnoElse (1) if E1 then IfwithElse
' (3) if E1 then if Expr then IfwithElse else IfwithElse
3. IfwithElse — if Expr then IfwithElse else IfwithElse (?) if E1 then if E2 then IfwithElse else IfwithElse
4, | ... other stmts... (4) if E1 then if E2 then S1 else IfwithElse
5. IfnoElse — if Expr then Stmt (4) if E1 then if E2 then S1 else S2

6. | if Expr then IfwithElse else
IfnoElse

Deeper Ambiguity

Ambiguity usually refers to confusion in the CFG

Overloading can create deeper ambiguity
— E.g.: a=b(3) : b could be either a function or a variable.

Disambiguating this one requires context:

— An issue of type, not context-free syntax
— Needs values of declarations
— Requires an extra-grammatical solution

Resolving ambiguity:
— If context-free: rewrite the grammar

— context-sensitive ambiguity: check with other means: needs knowledge
of types, declarations, ... This is a language design problem

Sometimes the compiler writer accepts an ambiguous
grammar: parsing techniques may do the “right thing”.

Parsing techniques

e Top-down parsers:

— Construct the top node of the tree and then the rest in pre-
order. (depth-first)

— Pick a production & try to match the input; if you fail,
backtrack.

— Essentially, we try to find a leftmost derivation for the input
string (which we scan left-to-right).

— some grammars are backtrack-free (predictive parsing).

e Bottom-up parsers:

— Construct the tree for an input string, beginning at the leaves
and working up towards the top (root).

— Bottom-up parsing, using left-to-right scan of the input, tries
to construct a rightmost derivation in reverse.

— Handle a large class of grammars.

Top-down vs ...

Has an analogy with two special cases of depth-first traversals:

e Pre-order: first traverse node x and then x’s subtrees in left-
to-right order. (action is done when we first visit a node)

» Post-order: first traverse node x’s subtrees in left-to-right
order and then node X. (action is done just before we leave a

node for the last time)
6o ...bottom-up!

id * id
Expr * id @ @ @
Expr op id 6 @

Expr op Expr

Expr @
b (@) €9
w ()) (@

Top-Down Parsing

Next Class

	Introduction to Parsing (Syntax Analysis)
	Introduction
	Regular Expression
	Chomsky’s hierarchy of Grammars:
	Expressing Syntax
	Derivation and Parsing
	Derivations
	A parse tree
	Find leftmost derivation & parse tree for: x-2*y
	Find rightmost derivation & parse tree for: x-2*y
	Derivations and Precedence
	Ambiguity
	Ambiguity Example:
	Eliminating Ambiguity
	Eliminating Ambiguity
	Deeper Ambiguity
	Parsing techniques
	Top-down vs …
	Top-Down Parsing

